

Building refurbishment: comparison of bio-based materials, conventional materials and new construction scenarios

Methodological approach to the LCA calculation

Authors: Bernardette Soust-Verdaguer (bsous@us.es), Carmen Llatas (cllatas@us.es)

Instituto Universitario de Arquitectura y Ciencias de La Construcción, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, Av. de La Reina Mercedes, 2, 41012, Sevilla, Spain

The LCA was developed in compilance with the ISO 14040 [1], 14044 [2] standard and the EN 15978 [3] (building LCA), and the EN 15804 [4] (construction product LCA). These standards organize the information related to the building life cycle into **Modules** (so called Information Modules). They are organized according to the following criteria (see Figure 1):

- **Module A,** includes the information (impacts) related to the product and building construction stage.
- Module B, includes the information (impacts) related to the building use stage.
- Module C, includes the information (impacts) related to the building end of life stage.
- **Module D,** includes the information (impacts) related to the benefits beyond the system (e.g., recycling and reuse of materials, production of energy tranfered to the grid).

When considering the LCA of refurbishment process several particuarities arise. One of them is the difficulty/complexity in obtaining information related to the existing building to conduct a complete LCA following the current standards (see Figure 1). Thus, the present study focused the LCA of the refurbishment process in calculating the impacts of the partial / total demolition, transport and final disposal of the existing building (**Module C** including C1, C2, C4), the impacts of the product and construction stages (**Module A** including A1, A2, A3, A4 and A5) and the impacts of the total demolition, transport and final disposal of the Refurbished Building (excluding the remaining materials and elements of the original building).

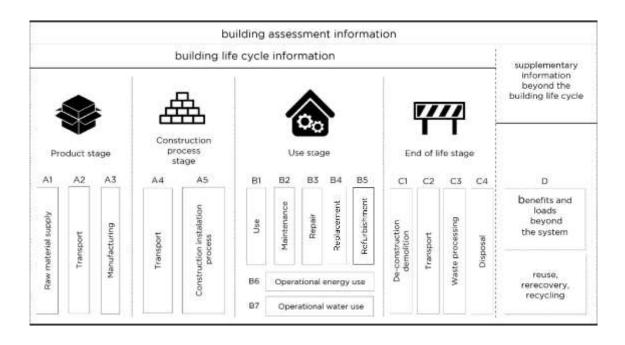
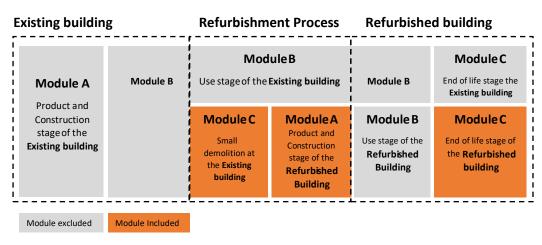
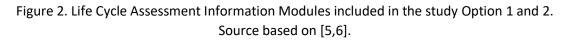




Figure 1. Life Cycle Assessment Information Modules. Source EN 15978 [3].

This LCA modularity organization of the refurbished building is based on the study conducted by Frey et al. [5], and collecetd by Hasik et al. [6] as a methodological approch to compare the benefit of renovation/ refurbishment vs new construction.

The present LCA compared three options: 1) a renovation scenario with bio-based materials, 2) a renovation scenario with conventional materials and 3) the new building construction and complete demolition of the existing. Figure 2 and 3 ilustrates the LCA Information **Modules** included in the LCA to each compared options.

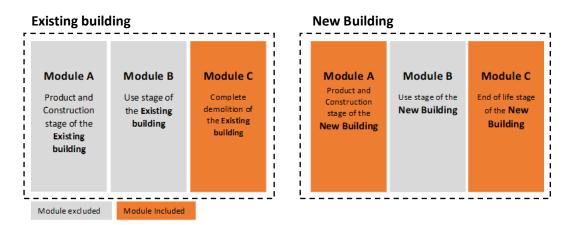


Figure 3. Life Cycle Assessment Information Modules included in the study Option 3. Source based on [5,6].

1. Goal and scope definition

Functional unit	complete building, it is recommended to transform the results to impact square meter (dividing the results by GFA of the building).
Building service life	50 years (according to CTE [7])
System Boundaries	Embodied Impacts produced by the building materials. A1-A3, A4, A5 and C1, C2 and C4.

2. Life Cycle inventory

LCA calculation Sofware	Excel
LCA database	Ecoinvent v 1.2

a. Assumptions

Transport to site / to end of life				
Process	unit process (Ecoinvent v1.2)			
	transport, lorry 16t			
Construction and deconstruction process				
Construction waste	5% of building materials			
production				
Energy and fuel	Calculation based on [8].			
consumption				

End of life scenario definition		
Bio-based materials	100% Incineration	
Other materials	100% landfill	
Distance to landfill /	40 m	
incineration		

Listed material	Adapted materials to the ecoinvent v1.2			
Stone	Basalt			
FEL'X	Bitumen			
Brick	Brick			
Cement	Cement			
Ceramic tile	Ceramic tile			
Cork	Cork			
Demolition (pre-construction)	Inert material			
Glass	Glass			
Gravel	Gravel			
Gypsum	Gypsum			
Limestone	Limestone			
Cane	Log (cane)			
EPDM	Polyethylene			
Polystyrene	Polystyrene			
Polystyrene	Sand			
Metal	Steel			
Straw	Straw			
Wood	Wood			
Rammed earth (composition	Straw			
based on [9], sand, 61.3%, Clay	Lime			
34.4%,Straw 0.44%, Lime 3.7%)	Clay			
	Sand (wall)			

b. List of materials and inventory assumptions (refurbishment bio-based materials)

c. Materials and unit process inventory

Material	Input process	Output process		
(ecoinvent v1.2)	(ecoinvent v1.2)	(ecoinvent v1.2)		
		disposal, inert material, 0% water, to		
basalt	basalt, at mine	sanitary landfill		
		disposal, bitumen, 1.4% water, to sanitary		
bitumen	bitumen, at refinery	landfill		
brick	brick, at plant	disposal, building, brick, to final disposal		
		disposal, building, cement (in concrete)		
cement	cement, unspecified, at plant	and mortar, to final disposal		
	ceramic tiles, at regional			
Ceramic tile	storage	disposal, building, brick, to final disposal		
Clay (Rammed		disposal, inert material, 0% water, to		
earth)	clay, at mine	sanitary landfill		

		1			
		disposal, building, waste wood, untreated,			
cork	cork slab, at plant	to final disposal			
demolition (pre-		disposal, inert material, 0% water, to			
construction)		sanitary landfill			
		disposal, building, glass sheet, to final			
glass	flat glass, coated, at plant	disposal			
		disposal, building, concrete gravel, to final			
gravel	gravel, round, at mine	disposal			
		disposal, gypsum, 19.4% water, to inert			
gypsum	gypsum, mineral, at mine	material landfill			
lime (Rammed		disposal, inert material, 0% water, to			
earth)	lime, hydrated, loose, at plant	sanitary landfill			
		disposal, limestone residue, 5% water, to			
limestone	limestone, at mine	inert material landfill			
		disposal, building, waste wood, chrome			
log (Cane) logs, softwood, at forest		preserved, to final disposal			
		disposal, building,			
		polyethylene/polypropylene products, to			
polyethylene	fleece, polyethylene, at plant	final disposal			
	polystyrene, expandable, at	disposal, polystyrene, 0.2% water, to			
polystyrene	plant	sanitary landfill			
		disposal, building, cement (in concrete)			
sand	sand, at mine	and mortar, to final disposal			
sand (Rammed		disposal, inert material, 0% water, to			
earth)	silica sand, at plant	sanitary landfill			
_		disposal, steel, 0% water, to inert material			
steel	steel, low-alloyed, at plant	landfill			
straw (Rammed		disposal, building, waste wood, chrome			
earth)	straw organic, at farm	preserved, to final disposal			
- *		disposal, inert material, 0% water, to			
straw	straw organic, at farm	sanitary landfill			
	an an thack an a firm of the	disposal, building wood, chrome			
	sawn timber, softwood, raw,	preserved, 20% water, to municipal			
wood	kiln dried, u=20%, at plant	incineration			

d. List of materials and inventory assumptions (refurbishment conventional materials and new building)

Listed material	Adapted materials to the ecoinvent v1.2		
Aluminium	Aluminium		
Brick	Brick		
Cement	Cement		
Ceramic Tile	Ceramic tile		

Demolition (pre-construction)	Inert material
Glass	Glass
Gravel	Gravel
Gypsum	Gypsum
EPDM	Polyethylene
Polystyrene	Polystyrene
Polystyrene	Sand
Metal	Steel
Wood	Wood

3. Life Cycle Impact Assessment

Impact assessment				
Method	CML 2001 (Ecoinvent v 1.2)			
Impact categories	acidification potential (kg SO2-Eq)			
	climate change (kg CO2-Eq)			
	eutrophication potential (kg PO4-Eq)			
	freshwater aquatic ecotoxicity (kg 1,4-DCB-Eq)			
	human toxicity (kg 1,4-DCB-Eq)			
	stratospheric ozone depletion (kg CFC-11-Eq)			
Biogenic carbon	Included (approach -1/+1 [10]) based on EN 16449 [11]			

4. Life Cycle Assessment Results

4.1. Modules evaluated in Option 1 and Option 2

Existing building		Refurbishment Process		Refurbished building		
Module A	Module B	Mod Use stage of the I		Module B	Module C End of life stage the Existing building	
Product and Construction stage of the Existing building	Module C Small demolition at the Existing building	Module A Product and Construction stage of the Refurbished Building	Module B Use stage of the Refurbished Building	Module C End of life stage of the Refurbished building		

Module excluded

Module Included

Table 1. Impacts on Option 1: Refurbishment with Bio-Based materials

Refurbishment with Bio-Based materials							
Information	LCA Stage	Acidification Potential	Climate Change	Eutrophication Potential	Freshwater aquatic ecotoxicity		Stratospheric ozone depletion
Module		kg SO2-Eq	kg CO2-Eq	kg PO4-Eq	kg 1,4-DCB-Eq	kg 1,4-DCB- Eq	kg CFC-11-Eq
Small Demolition at the existing building							

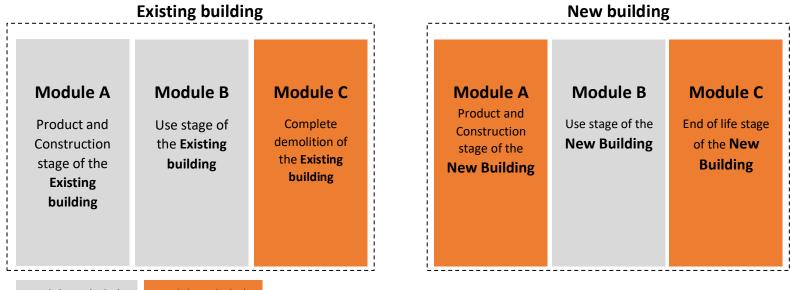

			Departamen	to de Construccione	co / «quiteotornicus			
	C1	Small demolition	34,055	1525,911	1,662	82,896	534,357	0,000113542
	C2	Transport to final disposal	3,927	592,304	0,644	33,242	121,920	0,000069618
С	C4	Final disposal	2,274	298,596	0,369	13,593	100,292	0,000076752
Refu	Refurbished building							
~	A1/A2/A3	Product	23,404	2098,593	2,845	289,481	1084,192	0,000486415
Α	A4	Transport to Construction site	17,126	2583,014	2,810	144,965	531,688	0,000303600
Α	A5	Construction	51,712	4731,662	6,929	950,762	1849,283	0,000388881
	C1	Demolition	47,663	4211,605	4,587	228,797	1474,857	0,000313384
	C2	Transport to final disposal	8,056	1215,014	1,322	68,190	250,099	0,000142809
С	C4	Final disposal	8,212	5324,190	1,386	842,691	402,066	0,000209986

Table 2. Impacts on Option 2: Refurbishment with conventional materials

Refur	Refurbishment with conventional materials							
Information Module			acidification potential	climate change	eutrophication potential	freshwater aquatic ecotoxicity	human toxicity	stratospheric ozone depletion
		LCA phase	kg SO2-Eq	kg CO2-Eq	kg PO4-Eq	kg 1,4-DCB-Eq	kg 1,4-DCB-Eq	kg CFC-11-Eq
Small	Small demolition at the existing building							
С	C1	Small demolition	45,652	3814,777	4,155	207,239	1335,892	0,000283856
	C2	Transport to final disposal	9,818	1480,760	1,611	83,104	304,800	0,000174044
	C4	Final disposal	5,684	746,490	0,922	33,983	250,730	0,000191880
Refur	Refurbished building							
Α	A1/A2/A3	Product	109,321	24343,018	9,827	2507,463	5454,036	0,001807663
	A4	Transport to Construction site	20,965	3161,975	3,439	177,458	650,862	0,000371649
	A5	Construction	55,964	5292,113	7,327	6701,470	1896,253	0,000401121
С	C1	Demolition	42,678	3824,543	4,399	195,700	1433,549	0,000299799
	C2	Transport to final disposal	8,273	1247,693	1,357	70,024	256,825	0,000146650
	C4	Final disposal	9,632	12579,247	1,619	6447,481	651,124	0,000229151

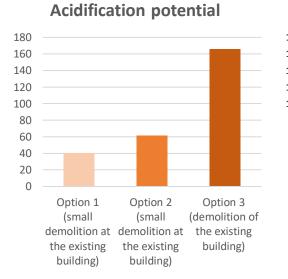
4.2. Modules evaluated in Option 3

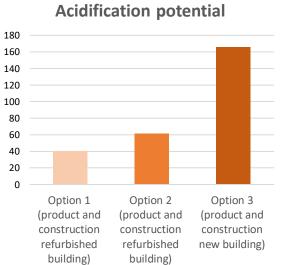
Module excluded Mod

Module Included

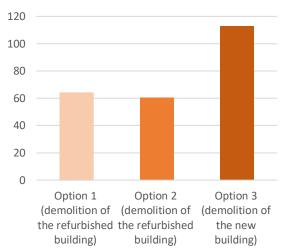
Table 3. Impacts on Option 3: Complete substitution of the existing building by a new construction

Cor	Complete substitution of the existing building by a new construction							
Inf			acidification		•	freshwater aquatic	human	stratospheric
Inte	ormation		potential	climate change	potential	ecotoxicity	toxicity	ozone depletion
Module		LCA phase	kg SO2-Eq	kg CO2-Eq	kg PO4-Eq	kg 1,4-DCB-Eq	kg 1,4-DCB-Eq	kg CFC-11-Eq
Total Demolition of the existing building								
	C1	Demolition	103,639	15259,108	16,618	828,957	5343,570	0,001135424
	C2	Transport to final disposal	39,272	5923,040	6,443	332,416	1219,200	0,000696176

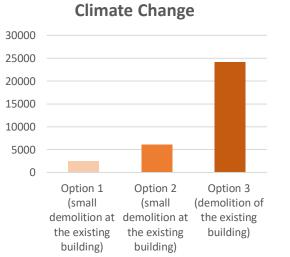

_								
C	C4	Final disposal	22,737	2985,960	3,687	135,932	1002,920	0,000767520
N	New building							
	A1/A2/A3	Product	146,450	39729,356	14,449	2771,280	6744,540	0,003098432
	A4	Transport to Construction site	48,424	7303,286	7,944	409,879	1503,310	0,000858406
A	A5	Construction	57,387	5468,769	12,038	6854,150	1960,673	0,000435223
С	C1	Demolition	42,678	3824,543	4,399	195,700	1433,549	0,000299799
	C2	Transport to final disposal	31,939	4817,127	5,240	270,349	991,559	0,000566190
	C4	Final disposal	38,094	16112,370	6,330	6600,162	1939,521	0,000911183

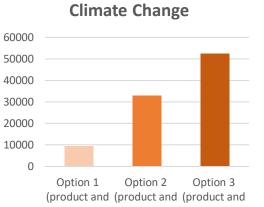

4.3. Comparison of the three options

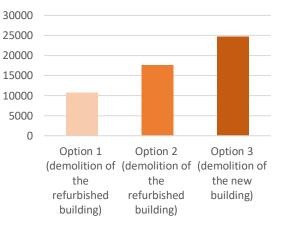
Option 1	Refurbishment with bio-based materials			
Option 2	Refurbishment with conventional materials			
Option 3	Substitution of the existing building by a new building			



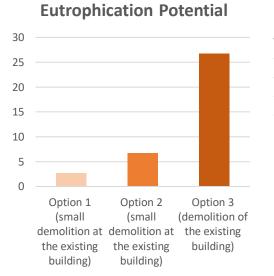
4.3.1. Acidification



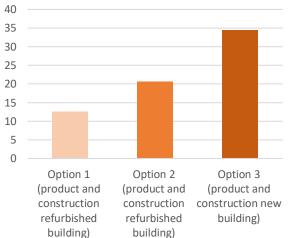

Acidification potential

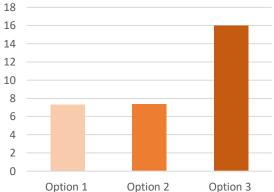


4.3.2. Climate change

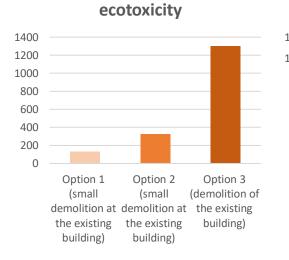


construction construction construction refurbished refurbished new building) building) building) **Climate Change**

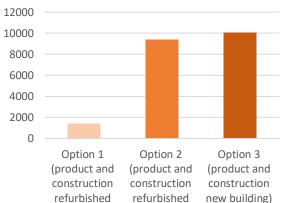



4.3.3. Eutrophication

Eutrophication Potential

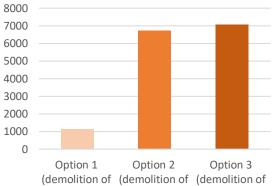

Eutrophication Potential

(demolition of (demolition of (demolition of the refurbished the refurbished the new building) building) building)



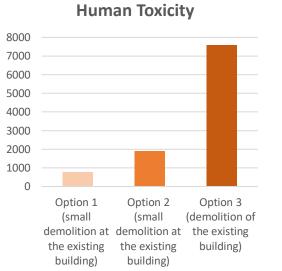
4.3.4. Freshwater aquatic ecotoxicity

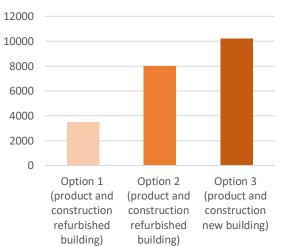
Freshwater aquatic


Freshwater aquatic ecotoxicity

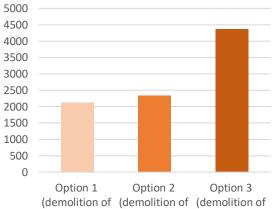
building)

building)


Freshwater aquatic ecotoxicity



the refurbished the refurbished the new building) building) building)


4.3.5. Human Toxicity

Human Toxicity

Human Toxicity

 Option 1
 Option 2
 Option 3

 (demolition of (demolition of (demolition of the refurbished the refurbished the new building)
 building)
 building)

15

5. Conclusions

Three scenarios have been compared. Option 1 is the bio-based refurbishment project. Option 2 is a refurbishment project in which conventional materials would have been used, instead of the bio-based ones. Option 3 considers the demolition of the building and the construction of a new one.

The LCA has been carried out according to the ISO and EN standards and following the four phases (goals and scope definition, inventory, impact assessment and interpretation) and the modularity principles for building LCA. In addition, to provide a transparent analysis, we have attached the assumptions and data sources used in the analysis.

The results obtained provide evidence that the **Option 1:** renovation with bio-based materials produced the lowest impact in all the impact categories analysed and for all the information modules analysed (acidification, climate change, etc.). The only exception is the Acidification Potential at the demolition of the refurbished building. There, the Option 2 produces the lowest impacts, but with a minimum difference (6%) with Option 1. On the other hand, **Option 3:** Substitution of the existing building by a new building, is the one that caused the greatest impact in all the categories analysed and for all the information modules analysed.

References

- [1] ISO, ISO 14040:2006 Environmental management Life Cycle Assessment Principles and Framework, 2006.
- [2] ISO, ISO 14044:2006 Environmental management Life cycle assessment Requirements and guidelines, 2006.
- [3] EN, EN 15978:2011 Sustainability of construction works Assessment of environmental performance of buildings Calculation method, Int. Stand. (2011).
- [4] EN, EN 15804:2012 + A2:2019 Sustainability of construction works Environmental product declarations Core rules for the product category of construction products, Int. Stand.
 (2012) 70.
- [5] P. Frey, L. Dunn, R. Cochran, K. Spataro, J.F. McLennan, R. DiNola, B. Heider, The Greenest Building : Quantifying the Environmental Value of Building Reuse, 2016. www.cascadiagbc.org (accessed May 24, 2021).
- [6] V. Hasik, E. Escott, R. Bates, S. Carlisle, B. Faircloth, M.M. Bilec, Comparative whole-building life cycle assessment of renovation and new construction, Build. Environ. 161 (2019) 106218. doi:10.1016/j.buildenv.2019.106218.
- [7] CTE, Spanish Building Technical Code, Real Decreto 314/2006 17 Marzo. BOE 74 (2006) 11816–11831. doi:CTE-DB-SE.
- [8] D. Kellenberger, H.-J. Althaus, T. Künniger, M. Lehmann, N. Jungbluth, P. Thalmann, Life Cycle Inventories of Building Products. Final report ecoinvent Data v2.0 No.7., Dübendorf, 2007.

- [9] S. Serrano, C. Barreneche, L. Rincón, D. Boer, L.F. Cabeza, Optimization of three new compositions of stabilized rammed earth incorporating PCM: Thermal properties characterization and LCA, Constr. Build. Mater. 47 (2013) 872–878. doi:10.1016/j.conbuildmat.2013.05.018.
- [10] E. Hoxha, A. Passer, M. Ruschi Mendes Saade, D. Trigaux, A. Shuttleworth, F. Pittau, K. Allacker, G. Habert, Biogenic carbon in buildings: a critical overview of LCA methods, Build. Cities. 1 (2020) 504–524.
- [11] EN, EN 16449 Wood and wood-based products Calculation of the biogenic carbon content of wood and conversion to carbon dioxide, 2014.

Bernardette Soust-Verdaguer, PhD. Researcher at the IUACC, University of Seville Email: <u>bsoust@us.es</u>

Carmen Llatas Oliver, PhD. Researcher at the IUACC, University of Seville Email: <u>cllatas@us.es</u>